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A MULTITEMPERATURE BOUNDARY LAYER ’’ 

Morton Camac and Nelson H. Kemp 

Avco-Everett Research Laboratory 
Everett ,  Massachusetts 

ABSTRACT 

This is a prel iminary report  on an analytical investigation of the end 
wall  boundary layer  behind a reflected shock in  a shock tube in  highly ionized 
argon. Two nonequilibrium effects a r e  cons idered  chemical nonequilibrium 
because of finite recombination rates,  and lack of equilibration between elec- 
t ron  and heavy (atom and ion) temperatures  because of a finite r a t e  of energy 
exchange due to e las t ic  collisions between electrons and ions. 
length is smal l  compared to the boundary layer  thickness. 
previous work in this a rea ,  we retain the coupling between the electr ical  
effects and the aerodynamic effects, considering both simultaneously. The 
electr ical  effects principally manifest themselves in  a plasma sheath next to 
the wal l  which is a few Debye lengths thick. 
ular  description of the plasma originated by Langmuir and Mott-Smith is used. 
Outside the sheath, in  the aerodynamic boundary layer ,  the usual continuum 
fluid mechanics t reatment  is used. These two descriptions of the plasma a r e  
joined at the sheath edge by requiring continuity of ion m a s s  f l u x  and electron 
energy f lux ,  which se rve  a s  boundary conditions for the continuum boundary 
layer  equations. 
propert ies  of ionized argon a r e  well-known, and they a r e  used to develop a se t  
of propert ies  for  the two-temperature case  considered here.  
the information necessary  to  fully define the problem. The solution i s  attemp- 
ted by means of a local s imilar i ty  approach, in which t ime is t rea ted  a s  a 
parameter ,  and the boundary layer equations a r e  reduced to  ordinary differ- 
ential equations. Only a few solutions, a l l  for frozen chemistry,  a r e  available 
a t  this stage of the investigation. They show that when elastic energy exchange 
between ions and electrons is ignored, the electron temperature  a t  the sheath 
edge is about half the external temperature.  
has only a slight effect  on wall heat t ransfer  rate.  

The Debye 
In contrast  with 

In this sheath the simple molec-  

The basic information determining the chemical and t ranspor t  

This completes 

However, this energy exchange 
Fur ther  calculatjons for  

both frozen chemistry and finite recombination r a t e  cases  

:::This work has been supported by Headquarters,  National Aeronautics and 
Space Administration, Office of Advanced Research  and Technology, 
Washington, D. C., under Contract NAS w-748. 



. 

I. INTRODUCTION 

There a r e  a considerable number of devices where a hot ionized 
p lasma comes in contact with a cold wall. 
p lasma propulsion motors ,  stagnation point flow in high speed flight, and 
many fusion machines. 
to the walls usually separate  the electr ical  propert ies  f rom the aerodynamic 
flow. 1, 2, 3 , 4  However, there  a r e  many situations where the degree of 
ionization of the plasma is large and this separation is not valid. 
tion, the state of the plasma in the boundary layer is usually assumed to be 
ei ther  chemically frozen (no g a s  phase recombination) o r  in complete chem- 
ical  equilibrium. 
boundary layer  equations by the usual s imilar i ty  transformations.  However, 
these limiting cases  need not bracket the general  case  which must  include 
recombination chemistry and different e lectron and heavy particle tempera-  
t u re s .  In par t icular ,  the electron temperature  can be considerably above 
the wal l  temperature  even near the waii. 

Examples a r e  plasma a r c s ,  

Theoretical attempts to calculate the heat t ransfer  

In addi- 

These limiting assumptions permi t  the solution of the 

The main objective of this paper is the development of a general  
boundary layer  theory which will include the important e lec t r ica l  and chem- 
ical  effects directly in the boundary layer  equations. l o  To obtain specific 
resu l t s ,  we have considered a Rayleigh problem in which a hot plasma at 
r e s t  is placed in contact with a cold wall. Detailed calculations a r e  p re -  
sented for argon, since the argon recombination r a t e s ,  5, 
pr ia te  t ranspor t  p r o p e r t i e s 7 ~  8 a re  well known. In addition, these calcu- 
lations can be compared directly to experimental  data in which the degree of 
ionization is up to 50%. 9 For  this case ,  the electr ical  effects a r e  important 
in the determination of the boundary layer  profile. 
be in e r r o r  to couple the electrical  effects to the bound.ary layer  profile for 
the neutral  component a s  is  done for low degrees of ionization. A quantita- 
tive understanding of the following phenomena is  needed in order  to obtain 
solutions of the boundary layer equations: (1) electron and ion temperature  
equilibration rates; (2) argon recombination chemistry;  ( 3 )  plasma sheath 
potential; (4) thermal  conductivity of the atoms,  ions, and electrons;  and 
ambipolar diffusion of electron-ion pa i rs  through atoms.  

and the appro-  

For  example, it would 

These phenomena will be discussed in the next section. Then the 
boundary layer  equations will be developed. Finally, we will present  the 
solutions of the boundary layer equations that have been obtained to date. 
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11. ARGON PLASMA PROPERTIES 

The end wall boundary layer using the gas sample behind the reflected 
shock in a shock tube is essentially a Rayleigh problem. 
ple is  abruptly placed in contact with a cold wall. 
boundary layer ,  whose propert ies  depend on the concentrations, thermal  
conductivity, and diffusion r a t e s  of each species .  
cation of the boundary layer  theory. 
since there is no flow parallel  to the wall. 

A hot plasma Sam- 
There is  only a thermal  

This permits  a simplifi-  
Effects of viscosity do not appear ,  

The evaluation of the end wall heat t ransfer  r a t e s  requires  a knowl- 
edge of the chemical species concentration in the boundary layer together 
with the t ransport  propert ies  that a r e  important in the theory. These a r e  
the thermal  conductivities of the electrons and neutral  argon, and the ambi-  
polar diffusion of electron-ion pa i rs  through neutral  argon. In addition, the 
slow ra te  of energy exchange between electrons and ions by elast ic  collisions 
permits  different electron and ion temperatures .  The boundary conditions 
a t  the wall must be modified because of the plasma sheath potential, which 
effectively isolates the electrons f rom the wall. We will now consider these 
phenomena in more detail.  

Energy Exchange by Elastic Collisions 

The exchange of energy between par t ic les  in an elast ic  collision i s  a 
function of the ratio of the m a s s  of the par t ic les .  
m a s s ,  the temperature equilibrates in a few collisions, a s  is  the case for  
collisions between the argon atom and ion. However, it  takes roughly 105 
elast ic  collisions for electrons and argon atoms o r  ions to equilibrate their  
t empera ture ,  because the electron is 80,  000 t imes lighter. 
number of collisions resul ts  in a weaker coupling between the electrons and 
heavy component, thus permitting the electron and heavy par t ic les  separately 
to have distinct but different temperatures .  
boundary layer,  the electron temperature  remains higher than that for the 
heavy particles near the wall. 
(1)  the la rge  number of collisions required for equilibration of e lectron and 
heavy particle temperature;  ( 2 )  ionic recombination heats only the electron 
component; and ( 3 )  the electron component is  thermally insulated from the 
wall by the plasma sheath. 

Fo r  par t ic les  of equal 

This large 

In par t icular ,  for  the argon 

This difference is  due mainly to three effects: 

The rate of energy t ransfer  per  unit volume by elast ic  collisions 
Eel f rom electrons to single charged ions i s5  

- 2- 



3 TE and TH are nE is the electron number density per  cm , and mE, 
the electron and ion m a s s e s  and temperatures ,  respectively. E and K a r e  
the e lec t r ic  charge and Boltzman’s constant. 

m.” 

The energy t ransfer  by elastic collisions f rom electrons to atoms is 
usually much less than to ions. 
section is smal l  for argon because of the strong Ramsauer  effect. l1  
c r o s s  section has  a minimum of 5 x l O - l 7  cm2/atom in the range f rom 
2000OK to 10, 00O0K. 
over t at for  the electron-atom when the degree of ionization is in excess  
of lo-’. Therefore ,  we have not included the atom-electron energy t ransfer  
in the present  analysis.  

The atom-electron elast ic  collision c r o s s  
The 

The ion-electron elast ic  c r o s s  section predominates 

Argon Recombination Kine t ics  

The only important recombination reaction for argon is by the electron 
impact process  

where E, ArS and Ar designate electrons,  ionized and neutral  argon, respec-  
tively. (Radiative recombination is negligible because of the trapping of the 
resonance radiation by the large neutral atom concentration in the boundary 
layer .  Also negligible is  the two step process  with the molecule Ar$. in the 
intermediate stage because of the small  binding energy of Ar3. ) 
of electron production is governed by the relation 

The ra te  

where nE, n and n a r e  the number densities of e lectrons,  ions and a toms,  
and krec an&kion a r e  the recombination and ionization ra te  constants. A 

At thermodynamic equilibrium dnE/dt = 0, and the ra te  constants of 
Eq. (2 .  3) a r e  proportional to the equilibrium constant, Keq 

where the subscr ipt  e q  indicates equilibrium. 
Saha formula applied to argon: 

K is obtained f rom the 
K = 2. 9 x 1016e$E1- exp (-Tion/TE)/cm . eq 

The argon recombination rate constant can be obtained f rom two 
sources :  (1) the measured ionization r a t e s  at high tempera tures ,  
(2)  the ionic recombination theory12, 13, l 4  based on the c lass ica l  e lectron 
impact c r o s s  sections. l 5  The recombination r a t e  constant, k:bc, based on 
c lass ica l  theory has the simple relation14 

and 
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This resul t ,  based on c lass ica l  theory, is  not expected to apply above 4000°K, 
where the important transit ion in the recombination process  is the large 
quantum jump f rom the f i r s t  excited s ta te  to the ground s ta te .  l 3  

The ionization process  for electron temperatures  in excess  of 
10, OOOOK was shown by Petschek and Byron5 to be determined only by the 
ra te  of excitation of the lower excited s ta tes ,  say  kexc, the r a t e s  for sub-  
sequent ionization f rom the low excited s ta tes  being much fas te r .  Thus, for 

5 
kexc , 

4&=4*vx /o -  [r 1 [ TE ) .eloe.tvorr-sec 

the excitation ra te  constant to the lowest excited s ta tes  is 

4 
--.IILI - (W) 

Th, 6 ~ ( K T E ) ~  '' z + -  

Texc = 134, OOOOK is the temperature  corresponding to the energy of the 
f i r s t  excited state. 
can be determined from kexc by combining Eqs.  (2 .  4),  (2 .  6)  and ( 2 .  7 )  

Fo r  TE  > 10, OOOOK, the recombination ra te  constant 

Tion - Texc = 48, OOOOK corresponds to the ionization potential of the first 
excited level. This ra te  constant requires  the assumption that the population 
of each excited argon level is in equilibrium with the electrons;  the loss ra te  
f rom any level is much slower than the production r a t e .  
process  becomes the de-activation of the f i r s t  excitation level by the electron 
collision process .  (Radiative transit ions do not contribute, because ground 
s ta te  resonance radiation is trapped a t  high densit ies.  ) The t rue ra te  con- 
stant,  k,,, , cannot be l a rge r  than either of the two r a t e s  given by Eqs.  ( 2 .  5) 
and ( 2 .  8),  and we propose that krec is given by Eq. (2 .5)  for TE  C 3000°K 
and by Eq. (2 .8 )  for TE  > 30000K. 

The ra te  limiting 

The large change of the recombination ra te  constant with tempera-  
tu re  has  an  important effect on the boundary layer  chemistry for the case  of 
large degrees  of ionization: that is, for electron concentrations f rom 1015 
to 1018 , and times f rom 1 to 10 microseconds.  F o r  electron temperatures  
above about 10, OOO°K, the recombination ra te  is  small ,  and there  is negli- 
gible recombination. However, for lower electron tempera tures ,  the r ecom-  
bination r a t e  becomes so fas t  that the degree of ionization must  remain  in 
equilibrium with the local electron temperature;  that  is, the degree of ioni- 
zation is  determined by the local electron temperature  through the Saha 
e quat ion . 

W a l l  Sheath Propert ies  

The properties of the plasma sheath surrounding an object in contact 
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with a plasma have been extensively treated.  '' 2' 3 y  16' l7 An approximate 
theory has  been postulated16, 17in which the plasma has  a continuum descr ip-  
tion with charged neutrality up to a sheath edge. Charge neutrality breaks 
down in the sheath,  an e lec t r ic  potential develops between the plasma and 
the wall, and a molecular description of the plasma is  used. 
thickness is of the order  of a Debve length, h :  

The sheath 

where TE  is in 0 K and nE is the number of electrons per  c m  3 . 

The sheath potential adjusts itself to maintain charge neutrality a t  
the edge of the plasma by not allowing a net charge to c r o s s  the sheath. 
That is, the electron cur ren t  towards the wall equals the total positive 
cur ren t .  The positive cur ren t  consists of two components: ions diffusing 
toward the surface and electron emission from the surface.  
conducting walls will be t reated,  and these walls a r e  catalytic. 
pa i r s  will neutralize on contact with the wall, and leave as atoms.  
sheath potential, # , is obtaified from the formula 

Only electr ical ly  

The 
Ion-electron 

where nI and nE a r e  the ion and electron number density at the edge of the 
sheath; 
e lectron emission. 
sheath. cI is determined by the drift velocity of "6 t e ion in the sheath; and 
reduces to the ion thermal  velocity in equilibrium with the local a tom t em-  
pera ture ,  when the ion makes many collisions in passing throu h the sheath 
When the ions fall freely through the sheath without collisions>$ c1= 4[wG. 
The wall emission,  J ,  can be produced by field emission and by photo- 
e lec t r ic  emission f rom ultraviolet light irradiation. 
photoelectric effect is negligible fo r  argon. 
the wall due to field emission i s  difficult to es t imate ,  since the field strengths 
at the wall, based on the sheath thickness of the order  of 1000 x, can be in 
excess  of 105 volts/cm. 
emission,  the sheath potential in Eq. (2. 10) reduces to 

- 
CE is the mean thermal  velocity for the electrons,  and J is the wall 

Note in this approximation, = nE a t  the edge of the 

It can be shown that the 
The amount of cur ren t  leaving 

However, i f  one assumes  negligible wall e lectron 

(2. I I )  

The sheath potential becomes a function of TE and C I  . We anticipate 
that the electron temperature  at the edge of the plasma sheath will be a sub-  
stantial  fraction of the external temperature,  while the ions and atoms a r e  
a t  the wall temperature  of approximately 300OK. When the f r ee  s t r e a m  is 
50% ionized, the electron-ion pair  and neutral  a tom number densit ies at the 
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17 3 20 3 edge of the sheath a r e  the order  of 10 /cm and 10 /cm . With these 
conditions, the sheath thickness, h is about T o  determine the 
effective ion velocity, C I  , the sheath thickness is  compared to the mean 
f r ee  path for atom-ion collisions, which is 5 x cm.  The ion makes 
about 2 collisions i n  passing through the sheath. 
value of C I  to be used in Eq. (2. 1 1 )  is intermediate between the values d is -  
cussed above. The energy that the ion receives  f r o m  the sheath voltage is 
t ransfer red  to the atoms. 
boundary layer  thickness that this energy is immediately t r ans fe r r ed  to the 
wall by the atoms. 

Fo r  this example, the 

However, the sheath is s o  sma l l  compared to the 

The energy transported a c r o s s  the sheath potential by the electrons 
and ions was treated by Jukes.  l o  On the average,  each electron crossing 
the sheath reaches the wall with an energy equal to ~ K T E ,  while an ion 
c a r r i e s  the thermal  energy ~ K T H  plus the sheath potential energy, 1 ~ 4 1 .  In 
addition, ion and electron pair  recombined a t  the surface releasing the 
ionization energy, E1 per  pair .  Thus, each ion-electron pair  brings to the 
wall the net energy, 

perature  of 10, OOOOK a t  the sheath, the total energy brought to the wall i s  
24 eV/pair. 

~ K T ~  t E1 t [c$b When T = 300°K, then the only 
important t e r m  is  the ionization energy, EI .  l!? owever, for an electron t e m -  

Several  authors1,  2 *  have calculated the electr ical  propert ies  of a 
plasma without using the simple sheath description outlined above. 
they have only considered small degrees of ionization, and taken the a e r o -  
dynamic properties of the plasma a s  given, thus uncoupling the aerodynamic 
and e lec t r ic  effects. Fo r  the large degrees of ionization and large plasma 
densities of interest  he re ,  such an uncoupling is not possible. However, the 
Debye thickness is smal l  compared to the boundary layer  thickness under 
these conditions, s o  the approximate description of the electr ical  effects 
given by the sheath model outlined above is sufficiently accurate .  

However, 

Transport  Propert ies  

The transport  properties of argon needed for the end wall boundary 
layer calculation a r e  the thermal  conductivity of the atoms,  ions, and e lec-  
t rons ,  and the ambipolar diffusion coefficient for ion-electron pa i rs  dif- 
fusing through atoms. 

F o r  the one-temperature  boundary layer ,  these propert ies  for argon 
a r e  fa i r ly  well-known. 
temperature  case will be based on the one-temperature se t  given in Ref. 9.  
The changes necessary in the thermal  conductivity can be found by going 
back to the source of the mixture rule used in Ref. 9, which is found in 
Ref. 7 .  A reconsideration of the derivation leads to only a slight modification 
in one t e r m ,  since all other appearances of the rat io  TH/TE a r e  in connection 
with t e r m s  of the f o r m  (mE/rnA)z which a r e  ignored. 
contribution of ions to the mixture thermal  conductivity is s t i l l  negligible, 
the contribution of the electrons is 

The derivation of a s e t  of propert ies  for the two- 

1 The resu l t  is  that the 
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and that of the atoms is 

(2112 a) 

Here Q is the collision c r o s s  section between par t ic les  denoted by the sub- 
sc r ip t s ,  a is  the fraction ionized, TH the heavy temperature ,  and ks is 
the Spitzer conductivity, which is taken to be 

0 3 The A quantities a r e  (T  in K, n in par t ic les /cm ) E E 

which a r e  the rat io  of the Debye distance to the impact parameter  for 90' 
deflection, and the rat io  of the average inter-electron distance to the impact 
parameter  for 90° deflection, respectively. 
allows for a proper crossover  between A I ,  valid a t  low electron density and 
high temperature ,  and A 2 ,  valid in the other l imit .  
ductivity is taken to be 

The combination used in ks 

The pure atom con- 

The ratio QAE/Q, is relatively unimportant in determining kE  
since this t e r m  is small except fo r  a very near  zero.  So a constant 
value of 1. 5 x 
c r o s s  sections is  the temperature region of interest .  
i s  the s a m e  a s  that derived in  Ref. 9 and is 

was used, in accordance with average values of these 
The rat io  QAI/QU 

The ambipolar m a s s  flux of ions is  found by using a momentum 
equation fo r  a toms diffusing in a two component mixture of atoms and ion- 
electron pa i rs .  
flux of ion-electron pa i rs  is expressed a s  

The derivation follows that of Ref. 9 to the point where the 
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(2.17) 

where DIA is  the binary ion-atom diffusion coefficient, PA the atom part ia l  
p re s su re ,  and the mixture p re s su re ,  p ,  has been taken constant, as appro-  
priate to diffusion in a boundary layer .  The departure  f rom a one-tempera-  
t u re  case occurs in the evaluation of p ~ / p .  F o r  the present  case  

where the fraction ionized, a , is expressible in t e r m s  of the number 
densities by 

For  TE = T H l  this reduces to the value used in Ref. 9.  When the tem-  
peratures  a r e  not equal, there  a r e  two new effects. One is the dependence 
of the coefficients on TE/TH, the other the appearance of an effect of the 
gradient of the temperature ra t io .  For small  a , the la t ter  effect disappears 
and the two temperatures just  replace the usual ambipolar factor 2 by ' TE/TH)' 

To normalize the diffusion coefficient, a Lewis number is defined, 
a s  in Ref. 9, by 

- Z h A  L, 5 f 4 p  
) - 

which is shown there to be 

(2.2 2) 
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If this is  used, the ion m a s s  diffusion flux can be written: 
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111. BOUNDARY LAYER FORMULATION 

General  Equations 

Since we a r e  allowing the electrons to have a temperature  different 
f rom the heavy particles (atoms and ions), we must  re turn  to fundamentals 
to obtain the equations of motion. 
leading to s l i  ht modifications of the equations in Chapter 8 of Chapman 
and Cowling. f 8  

A kinetic theory approach can be used,  

Allowing for a production t e r m  wi (the mass r a t e  of production of 
species i per  unit volume and t ime),  the m a s s  conservation law for this 
species is 

where v is  the mass  velocity, V .  the diffusion velocity of species i relative 
to v ana  pi the partial  density pi1= nimi . 
species ,  we find the usual over-all  continuity equation, 

When this is  summed over all - 

where 

For  the momentum conservation law for species i ,  we introduce 
the external force per  unit mass  F i  and the shear  s t r e s s  tensor 7 .  -1 ' 
defined by - - 

where p i  is the s t r e s s  tensor for species i , and U the unit tensor.  
the moPhentum equation can be written 

Then - - 
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where si is the increase  of momentum of species i due to collisions. 
the terms on the second line vanish when a sum over all species is performed,  
leading to the over -all momentum equation 

All 

where 

Finally, the energy conservation law is writ ten using the thermal  
enthalpy per  unit m a s s ,  h .  and the energy flux vector q. . 

1 -1 . 

Here AF,. is the energy gained by species i due to collisions, including 
chemical reaction effects. When this equation is summed over all species ,  
the last t e r m  on the left vanishes,  but the collision t e r m  might still make 
a contribution because of conversion of Xinetic energy into potential energy 
by chemical reaction. The resu l t  is the over-al l  energy equation 
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where 

For  a mixture of monatomic gases ,  the thermodynamic expressions 
a r e  

For  the energy flux vector,  we shall  take the usual expression 

% i =  - &;VT, t p.V* c--L 4 i ) (3.12) 

thus ignoring possible diffusive thermo-effects,  which may be different in a 
multi- temperature mixture than in a single temperature  mixture .  Note that 
the thermal  conduction coefficient ki is  the conductivity of species i in the 
mixture ,  not by itself. 
s t r e s s  tensor  'i . 

We shall  have no need for an expression for  the shear  

.- 

To apply these equations to the present  case of a monatomic, ionized 
g a s ,  we first  apply Eq. ( 3 .  5) to the momentum of the electrons.  All except 
three t e r m s  have the electron m a s s  m 

a r e  independent of mE,  since FE = - EE/mE , where E is the electronic 
charge and E the electr ic  f i e l x  Thus, if we ignore factors  of mE2 and 
smal le r ,  t h e  electron momentum equation becomes 

a s  a factor.  The s t r e s s  t e r m  depends 
on m z 1 . The electron p res su re  g r a  8 lent t e r m ,  and the external force t e r m  E 

which relates  the electr ic  field between electrons and ions to the electron 
pres  su re .  

The over-all  momentum equation. in this case is 

because the external force t e r m  balances out between electrons and ions. 

When the energy equation ( 3 .  8) is writ ten for the electrons,  the 
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last term on the left  is proportion91 to mE and can be ignored, while the 
shea r  s t r e s s  t e r m  depends on mEZ and can also be dropped. 
t e r m  contains two contributions. 
collisions between electrons and the heavy par t ic les ,  discussed in Section 11, 
which we denote by Eel . The second contribution is the loss  of energy to 
the ions in the ionization reaction, which is wIho, where ho i s  the ionization 
energy per  unit mass of the ions, EI/mA. 
external  force t e r m  and the assumption of ambipolar diffusion, vE = XI , 
the electron energy equation is 

The collision 
One is the loss  of energy by elast ic  

When we use Eq. ( 3 . 1 3 )  f o r  the 

Gel is a rate constant for the elastic energy exchange process  inser ted for 
convenience in the nlunerical calcu!ations, DAe physically co r rec t  value of 
this constant is unity. 

Since the ions and atoms have the same temperature ,  we will com- 
bine their  energy equations. When we do, the las t  t e r m  on the left disappears 
since piV. = 0 and only the heavies contribute to this sum.  
t e r m  involv& only the increase of energy of the heavies due to e las t ic  
collisions. 

The collision 

So the heavy energy equation is 

where again Eq. ( 3 .  13) has been used for the external force t e rm.  
over-al l  energy equation is the sum of Eqs.  ( 3 .  15) and ( 3 .  16): 

$. 16) 

The 
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End W a l l  Boundary Layer Equations 

We now apply the general  equations to the end wall boundary layer 
behind a reflected shock, i. e . ,  with a quiescent external flow. Taking the 
y axis normal  to the wall, variations occur only in y and t .  
flow parallel  to the wall, so  the tangential momentum equations a r e  of no 
significance. Applying the usual boundary layer  approximations, the over - 
all momentum equation ( 3 .  16) in the normal  direction yields the familiar 
resu l t  that the mixture p re s su re  p is  a constant throughout the layer .  

There  is  no 

The remaining equations a r e  the over -all m a s s  conservation equation 
( 3 . 2 )  which determines the normal  velocity v; the species conservation 
equations ( 3 .  l ) ,  which reduce to one equation for the fraction dissociated by 
using the ion equation; and the electron, heavy and over-al l  energy equations, 
( 3 .  15) ,  ( 3 .  16), and ( 3 .  17), only two of which a r e  required to determine the 
electron and heavy temperatures  TE and TH. When the boundary layer  
approximations a r e  used in these equations, the shear  s t r e s s  t e r m s  all 
disappear. We also make use of the thermodynamic relations ( 3 .  1 1 )  , the 
energy flux expression ( 3 .  1 2 ) ,  and the diffusion m a s s  flux sum of Eq. ( 3 .  3) .  
The equations of the end wall boundary layer then become 
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Here we have used the definitions 

Together with the transport  propert ies ,  the ionization r a t e s ,  and the 
elast ic  energy exchange given in Section 11, and the gas law indicated in 
Eq. ( 3 .  l l ) ,  these equations determine the variables v, a, T 

needed. ) 

and TE. 
(Remember that only two of the three energy equations (3 .  1 81 c ,  d ,  e )  a r e  

An expression for the total energy flux normal to the wall can be 
obtained f rom Eq. ( 3 .  1 2 ) ,  with the addition of the flux of ionization energy. 
This expression is 

Boundary Conditions 

At the outside edge of the layer,  we take a l l  conditions to be known; 
with subscr ipt  e denoting these conditions, we have 

We will assume the external plasma to be in temperature  equilibrium so 
that THe = TEe = Te. 

The wall boundary conditions involve consideration of the presence of 
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the plasma sheath. 
sheath. 
boundary conditions for the solution of Eqs.  (3. 18) a r e  obtained by a matching 
of the continuum and molecular descriptions.  

The continuum approach is used up to the edge of the 
In the sheath the usual molecular description is  used. The inner 

As boundary conditions we will use the continuity of ion m a s s  flux 
and electron energy flux a t  the interface between the continuum and molecular 
descriptions.  The former  requires  

4 
while the la t ter  condition can be obtained f rom Eqs.  (3.  12) and the con- 
siderations of Section 11. 
with average energy ~ K T E  t 
wall is (nEFE/4) exp(- \E$\ / K T ~ ) .  
flux requires  

Electrons which get to the wall enter the sheath 
and the flux of electrons which reach  the 

Thus, continuity of electron energy 

The potential r$ is determined by Eq. ( 2 .  11). 
by the continuum ion flux by using Eqs.  ( 3 .  21)  and ( 2 .  10) with J = 0. 

The electron flux is replaced 

The third boundary condition determines TH at the wall. The atoms,  
unaffected by the sheath voltage, a r e  in good contact with the wall a t  the wall 
temperature .  
except possibly within a few sheath thicknesses of the wall. 
continuum description ends where this equilibrium no longer holds, so as a 
boundary condition as  the continuum equations, we take the heavy tempera-  
ture  a s  the wall temperature:  

The ions a r e  in temperature  equilibrium with the a toms,  
However, the 

The three boundary conditions (3. 21)-(3.  23) a r e  applied a t  y = 0, and 
complete the specification of the problem. 

Method of Solution 

The problem, a s  s o  far formulated, requires  solution of par t ia l  
differential equations. 
s idered,  the chemically frozen and equilibrium cases  permit  s imilar i ty  
solutions in which the introduction of the independent variable 

If only the case of temperature  equilibrium is  con- 
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permi ts  a reduction to ordinary differential equations. When ei ther  tem-  
pera ture  o r  chemical nonequilibrium is considered, such an exact reduction 
is not possible. If q is introduced into Eqs.  (3 .  18) and ( 3 .  2 0 ) - ( 3 .  2 3 ) ,  t 
appears  explicitly in the Eel and WI t e r m s ,  as well a s  in Eq. ( 3 .  2 1 ) .  
However, a "local similari ty" type of approach is possible, with t t reated as 
a pa rame te r ,  and the normalized dependent variables 

(3.2 Y b) 

taken as functions of q only. 
t to be small, and all the important t ime dependence to be contained in the 
explicit appearance in the source terms and boundary conditions. Its grea t  
advantage is the fact that only one independent variable is involved, so only 
ordinary differential equations must be solved. 

This approach a s sumes  the ra te  of change with 

This "local similari ty" approach is the one which has  been used in 
the few calculations so far made. 
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IV. RESULTS AND DISCUSSION 

To  the date of writing only two solutions have been obtained with 
the local similari ty approach outlined here .  
temperature  equilibrium is available f r o m  a previous investigation. 19 
The present  calculations represent  one external condition, for  one t ime,  
with two different values of the e las t ic  collision r a t e  constant Ce l ,  and 
with no gas  phase recombination. The conditions used a r e  those behind a 
reflected shock fo r  a n  initial argon p res su re  of 1 mm Hg, and an  incident 
shock velocity of 6 mm/psec.  

A third solution fo r  

These conditions a r e  

T = 15,828'K, p = 2. 516 atm, ae = 0. 558, e 

T = 300°K, t = 1 psec 
W 

The two values of C so far used are  e l  

Cel = 0 and Cel = 0 .  005 

F o r  the determination of cI in Eq. (2.  11) both the limiting values 
discussed in Section 11, namely 

were used for  each value of Cel ,  since the number of collisions in  the 
sheath is 2 o r  3, which is  between the many-collision and zero-collision 
l imits .  Numerical difficulties have s o  far prevented the solutions for  
higher values of C e l ,  although the appropriate value is  Cel = 1 .  5 

The profiles for  the cases  Cel = 0 and Cel = 00 (temperature 
equilibrium) a r e  shown Pn Fig.  1. 
limits of weak and strong elast ic  energy exchange for  frozen chemistry.  
Only one s e t  of profiles is shown for  C 
between using the two limiting values 07 cI is not discernible on the scale  
of the figure.  The profiles for  Cel = 0. 005 a lso differ only slightly f r o m  
those for  Cel = 0. 

These two cases  should represent  

= 0, since the difference 

U'e see  that for  the case of no energy exchange by e las t ic  collisions 
the electron temperature at the edge of the sheath is nearly half the 
external gas temperature,  and remains nearly constant through the ra ther  
thin diffusion and heavy temperature  layer ,  and then r i s e s  gradually in a 
layer some four t imes  as  thick. This high electron temperature  at the 
sheath edge is brought about by the insulation of the electrons f r o m  the 
wall by the negative sheath potential. 
of the electrons reaching the sheath edge get through the sheath to the wall. 
However, the fraction ionized at the sheath edge is quite high ( 3  x 10-3 to 
3 x 

Only a small  fraction of one percent 

because the enhancement of ambipolar diffusion by the high 
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Fig. 1 Profi les  of normalized temperature and fraction ionized in t e r m s  
of the s imilar i ty  variable for frozen chemistry.  

- 19- 

A 1 3 2 3  



.. 

electron temperature brings in  a large flux of electron-ion pairs .  
the smal l  fraction of electrons getting through c a r r i e s  enough energy to 
reduce the electron temperature  below its external  value. 

So even 

The heat t ransfer  to the wa l l  can be found by calculating the heat  
t ransfer  to the sheath edge, since the sheath is  so thin that all  this energy 
gets to the wal l .  The 
resu l t s  a r e  given in  Fig.  1 for both values of cI, We see that the case  of no 
energy exchange by elast ic  collisions yields a slightly smal le r  heat t r ans fe r  
ra te  than the case with temperature  equilibration. This i s  probably a r e su l t  
of the thin heavy temperature  layer ,  which in turn  is caused by the uncoupling 
of the electrons f rom the heavies. 
limiting values of c is a l so  small .  I 

F o r  this purpose we use Eq. ( 3 .  18f) applied a t  q = 0. 

The differences caused by using the two 
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